

Frequency response
measurement system for at-

home laboratory work
FINAL REPORT

sdmay21-49

Client: Gary Tuttle

Advisers: Gary Tuttle

Team Members: David Gorzney, Rohan Gijare, Samuel Ferguson,
George Youngwirth, Kathryn Blesi, Tabitha Kiiru

Team Email: sdmay21-49@iastate.edu

Revised April 25, 2021

1

Table of Contents

1 Introduction 3

1.1 Acknowledgement 3

1.2 Problem and Project Statement 3

1.3 Operational Environment 3

1.4 Requirements 3

1.5 Intended Users and Uses 3

1.6 Assumptions and Limitations 4

1.7 Expected End Product and Deliverables 4

1.8 Development Standards & Practices Used 4

1.9 Applicable Courses from Iowa State University Curriculum 4

1.10 New Skills/Knowledge Acquired That Was Not Taught in Courses 4

2 Design 5

2.1 Similar Projects And Literature 5

2.2 Development Process 5

2.3 Design Schematic & PCB Prototype 5

2.4 Design Evolution 6

3 Testing 7

3.1 Unit Testing 7

3.2 Interface Testing 8

3.3 Acceptance Testing 9

4 Implementation 10

5 Closing Material 11

5.1 Conclusion 11

5.2 References 11

6 Appendices 12

 6.1 Operation Manual 12

 6.2 Alternative Designs 15

 6.3 Code 15

2

List of figures/tables/symbols/definitions (This should be the similar to the

project plan)

2.3 Figure 2.3.1: Frequency Generator Module Schematic

2.4 Figure 2.4.1: Device Block Diagram

3.1 Figure 3.1.1 Output waveform of the frequency generator using a simple RC filter circuit

3.2 Figure 3.2.1 Frequency Response Analysis Application GUI

3

1 Introduction

1.1 ACKNOWLEDGEMENT

Great acknowledgements are given to Professor Gary Tuttle of the Iowa State University
Electrical Engineering department for his insight and knowledge to the topics revolving around the
project specifications

1.2 PROBLEM AND PROJECT STATEMENT

- This project is a take home frequency generator. Throughout the COVID19 pandemic,
students were left without a lab bench while taking heavy lab classes. Iowa State
University figured out how to send the students take home exploration boards. The
problem though, was that these boards cost way too much money. On top of that the
boards were sold out as many other programs attempted to buy the same boards. The
take home frequency generator project has the goal of giving students the hardware to
measure the frequency response of their circuits for a price that is reasonable.

- The project is to consist of a printed circuit board and other components.
- There are going to be two probes for measurement along with the frequency input wire

and the ground.
- The assembly will have a way to store values through software directly into the computer.

1.3 OPERATIONAL ENVIRONMENT

This product is designed to be used in an at home lab environment. The product is designed to
be able to be put into a backpack and carried around so it will not be too fragile, though it is not
rugged enough to be dropped or crushed. Being as it is a piece of electrical lab equipment, it is
not designed to be wet or left out in the elements.

1.4 REQUIREMENTS

Functional

● A low cost component system that creates, measures and records the frequency

responses and can be purchased to be operated at-home.

● The final product should have the following components incorporated into it :

○ a sweepable AC source with frequency ranging from 10 Hz to 1 MHz

○ a chip to measure RMS voltages

○ a microcontroller to automate the sweep and measurement

○ a memory module for storing the measured results

○ an interface for that can be used with a computer to control measurements and

review measurements.

Non-functional

● Portable

● Easy to use

● Should cost less than $25

1.5 INTENDED USERS AND USES

Our end product will be used by college students enrolled in EE201. EE230, and EE333 at Iowa
State. It will be used as a way to complete laboratory assignments if a student is not able to
physically be in the lab.

4

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

User will have -

● Windows machine to run Frequency Response Analyzer App
● An Arduino microcontroller with ADC capabilities.
● Breadboard and wires to connect terminals of the Arduino to the board and test circuit

components.

Limitations:

● Should be completed by the end of spring semester 2021
● The Frequency range of the function generator will be between 10 Hz to 1 MHz
● Should be pre-soldered so that students with no soldering skills can use the device easily.
● Manufacturing cost should be $100 or less

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The project is a frequency response module that will be used by students for at home lab work.
The PCB will be used to connect all of the various parts and will have circuit logic used to hold the
system together. The probes will be used to send out the generated frequency, for ground, and for
reading the information for the frequency response. The user manual details how to use the end
product. This will be the last thing we make, once we know how the end product will work. This will
be completed by April of 2021.

1.8 Development Standards & Practices Used

● The development of the prototype will be guided by the IEEE standards for technical

reliability and soundness.

○ IEEE730: Unit testing

○ IEEE754: Measurements must be accurate to two decimal places

○ IEEE33-1927: Frequency specification must be accurate to 1Hz

● Solderless breadboards will be used as a construction base for the testing of all the

components for the final product.

1.9 Applicable Courses from Iowa State University Curriculum

EE 201: Electric Circuits

EE 230: Electronic Circuits and Systems

EE 333: Electronic Systems and Design

1.10 New Skills/Knowledge acquired that was not taught in courses

PCB design (KiCAD)

Python programming

Arduino programming (C++)

Application specific MCU programming (AD9833 Function Generator)

Microchip unit testing (RMS to DC converter and Function Generator)

5

2 Design

2.1 Similar Products And Literature

In the market currently there is a board called the DAD (Digilent Analog Discovery) board. This

board has many different features that relate to electronic circuit analysis. It has frequency

response, phase response, and many more features. The difference between this product and

the product we are trying to create is that the DAD board has many more bells and whistles which

cause it to cost significantly more ($399) and we planned to have the Frequency Response

Device cost around $25.

2.2 DEVELOPMENT PROCESS

We used the Waterfall methodology as our development process, which involves completing one

task before moving on to the next. This allowed us to know where we were in the design process

and the tasks we needed to complete. We first looked at the project's requirements and talked to

our client about what he wanted the end product to look like. Using this information we created a

general design of our device , adding small details as our client advised us, and eventually

created a detailed design. Next step was programming the function generator, then performing

unit testing on each component in order to determine that they work. We then moved to

integration testing to test multiple units together. The last step of this methodology was system

testing where we tasted the system as a whole to make sure that the device meets all the design

requirements.

2.3 DESIGN SCHEMATIC & PCB PROTOTYPE

The project included designing a schematic and designing a PCb layout of the model. Changes

and alterations that occurred were reflected in the schematic and PCB design, and in the updated

list of components. We created a schematic capture, associated footprint and defined the outline.

However, we were unable to create a board layout due to time limitations and the fact that we

were new to using KiCAd.

Figure 2.3.1: Frequency Generator Module Schematic

6

2.4 DESIGN EVOLUTION

For our original proposed design, we wanted the Frequency Response Device to have an
embedded MCU that would control the function generator, sample the RMS to DC output and
save the data points to a CSV. Since some of our group members already had experience with
software development, we decided to use a PC to save and post process the data points. This
helped reduce the development time of the device and overall cost of the deceive. Also having an
application that can post-process the data and give time estimations of the analysis makes using
the device much more convenient for the user. The one drawback of this design change is that
the user is required to own an MCU such as an Arduino. However, students can check out
Arduino’s for free from ETG in Coover Hall.

We also wanted to give the user the ability to set specific frequencies using a potentiometer, but
this was only a stretch goal to give the device more features and flexibility. The device was also
supposed to have an LCD screen that would read the current frequency being output of the time
remaining for the analysis, but this was replaced with the Frequency Response Analysis
application.

We added +-6V terminals so that the user can analyze active filter circuits instead of just passive
filter circuits, but the 12V source must be a battery or a battery pack. The board also has a
physical button to start the analysis and a switch to swap between sinusoidal and triangular
waveforms. The final design of our PCB would be similar to the block diagram given below. We
have all the mentioned features in our prototype breadboard design.

Figure 2.4.1: Device Block Diagram

7

3 Testing

3.1 UNIT TESTING

The unit testing of our project was broken down into three main groups: Testing for the function

generator module, testing for the RMS to DC Converter module, and software testing for the User

application and the Arduino code.

Function Generator Module -

To test the function generator module, we created an Arduino application that would program the
function generator to do different waveforms at specified frequencies. This testing allowed us to
learn what all the correct bit placements were to correctly program the AD9833 function
generator. Once the AD9833 programming was understood, we then were able to complete an
Arduino application. This application programs the function generator to sweep frequencies with
the given waveform from 10Hz to 1MHz.

RMS to DC Converter Module -

We used a lab function generator to generate sinusoids at different Vrms values and frequencies
and analyzed the given outputs for the RMS to DC converter (AD8436). This testing helped us
get an idea of the accuracy of the RMS to DC converter and what the amplification of the function
generator and the DC output would need to be.

Software Applications -

For testing of the Arduino and Frequency Response Analyzer application, we focused on the
Arduino to PC communication. The serial driver in the Frequency Response Analyzer application
needed to be programmed to have a timeout of 5 seconds. The serial driver also needed to be
correctly unbound when the application was no longer using the comport. The Arduino would
send the sampled magnitudes via comport to the PC. The first byte of data from each sampled
value would begin with xC0. This would be used as a flag for the Frequency Response Analyzer
application to ensure that the sampled comport messages were from the Arduino.

System.

Finally for system testing, we used the device on a couple of filter circuits with their corner
frequencies calculated and compared the output waveforms of the Frequency Response
Analyzer. For example, we tested the device with an RC filter circuit (1kohm & 10nF) with corner
frequency of 15.91kHz and received this plot as the output which correctly corresponds to the
expected frequency response.

8

Figure 3.1.1 Output waveform of the frequency generator using a simple RC filter circuit

3.2 INTERFACE TESTING

For interface testing, we tested our Frequency Response Analyzer applications’ user interface.

For the comport selection window, the user can select any available comport. If the comport is

unavailable, then the blue “Done” indication label will display “COM Unavailable”. This would be

the case if the comport was unplugged or being used by another application. The comport can

also timeout if the user didn’t hit the sweep button in time after pressing the “Record Frequency

Response” button or the comport they selected was the improper port. In this case, the indicator

label will then display “Timed Out”. When the user presses the “Display Recorded Data” button,

the application displays the most recent completed frequency response recording. This makes it

so that the application doesn’t fail if they have a failed attempt and try to display the data. The

application will display “Done” in the indicator label to tell the user that the application is done

sampling. There is also a “Time Est.” label to indicate the amount of time remaining for the

frequency response analysis.

Figure 3.2.1 Frequency Response Analysis Application GUI

9

3.3 ACCEPTANCE TESTING

To demonstrate that the design requirements are being met, we compared the results obtained
from testing to the expected and desired results. The device sweeps from 10Hz to 1MHz as given
in the design requirements. We used an oscilloscope to probe the output of the device without a
filter circuit and ran the device. The device accurately swept between the programmed
frequencies from 10Hz to 1MHz. We then added filter circuits to the device, probed the filter
output with the oscilloscope, and compared the oscilloscope magnitudes with the recorded
magnitudes by the Frequency Response Analyzer. The Oscilloscope and the device had the
same magnitudes and frequency response.

10

4 Implementation

For the implementation of the device, we started by designing the function generator module

using the AD9833 IC. Before we designed the module, we did extensive research through the

data sheets provided. The AD9833 IC was a digital application specific IC and was quite

complicated to learn how to program with it’s proprietary programming message formats. We

learned how to use the SPI serial interface, different bit placements, and data conversions for the

IC. We used a testing schematic given to us on the datasheet for the function generator and tried

programming it using an Arduino. Programming the AD9833 was the most time consuming

portion of the project as it was hard to learn the bit placement of the programming messages with

few examples online. Once we figured out how to program it to create a specific frequency and

waveform, we needed to figure out how to constantly reprogram it to sweep through a range of

frequencies. With some more research and testing, we were able to figure out how to reset the

function generator and reprogram it for a different frequency quickly and easily.

Once we completed the function generator module, we started to work on a prototype Python

application that would take a CSV of recorded data points and display them on a plot. The

prototype mostly consisted of the graphical user interface (GUI) and did not include the time

estimation indicator or the status indicator. Once the GUI was designed for the application, we

created an Arduino application that would serialize ADC values of a given voltage and send it to

the PC. For this portion of the design we added a flag byte to each serialized message of 0xC0.

This flag would indicate that the message was correct and complete. We then programmed the

Python application to read the serial port and get the correct serial messages. The messages

were then calculated into actual voltage values based on the ADC range of 5V.

Now that the Python application could sample the magnitudes of the Frequency Response

Analyzer device, we could start to design the RMS to DC converter module. We started the

design by creating a sample test circuit from the AD8436 datasheet. Using a lab function

generator, we tested the module with different magnitudes and frequencies to see the

corresponding DC output voltages. Luckily the device had little to no offset with a coupling

capacitor to the RMS input of the IC. We decided that the DC output was accurate enough to

amplify itself instead of the function generator. We decided this because in order to amplify the

function generator we would need a negative supply and designing the circuit without a negative

supply voltage would be much simpler and cost effective.

Once we had a working function generator module and RMS to DC conversion module, we then

could work on finalizing the software. Magnitude sampling was added to the frequency sweeping

Arduino code and the Python application’s frequency range was matched to the frequency sweep

of the function generator. Finally, all the modules for the device were complete and we began

system testing and implementation.

With the final testing of the device, we changed the plot from being linear to logarithmic. This

really helped eliminate the clutter of data points at the lower frequencies. We also added an

optional 9-12V battery supply that would allow the user to have +-4.5V or +-6V available for

testing active filters. We then tested some filter designs to make sure the device was recording

frequency responses correctly. The design was a success, so we began working on a PCB using

KiCAD. Unfortunately we were all new to using KiCAD and ran out of time to design and order the

PCB so that we could have a finished device.

11

5 Closing Material

5.1 CONCLUSION

We were able to complete robust and effective software for this project and a full working

schematic for the design that met nearly all of the requirements. We unfortunately did not have

enough time to complete a PCB design and order the PCB for the finalized device. With the two

extra weeks we have in a normal semester, we believe we would’ve been able to fully complete

the project and have a finalized device. Overall, with the current software and design materials

we have available, another engineer or student should easily be able to replicate the working

design for themselves.

5.2 REFERENCES

List technical references and related work / market survey references. Do professional citation
style (ex. IEEE).

Schwartz, Eric M. “Digilent Analog Discovery (DAD) Tutorial.” University of Florida, 2015,
mil.ufl.edu/3701/DAD/DAD_tutorial.pdf.

Additional Information for the components used in the project:

ATmega328P Microcontroller Unit Data Sheet -

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-

ATmega328P_Datasheet.pdf

AD9833 Frequency Generator IC Data Sheet -

https://www.analog.com/media/en/technical-documentation/data-sheets/AD9833.pdf

AD8436 RMS Voltage Measurement IC Data Sheet -

https://www.analog.com/media/en/technical-documentation/data-sheets/AD8436.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9833.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD8436.pdf

12

6 Appendices

6.1 APPENDIX I - OPERATION MANUAL

Using the Frequency Response Analyzer App:

1. Download the “Frequency Response Analyzer.zip” file.

2. Extract the “Frequency Response Analyzer.zip” file.

3. Right click the “Frequency Response Analyzer.exe”, create a shortcut, and place the

shortcut in your desired location.

a. The “Frequency Response Analyzer.exe” must remain in the folder, but the folder

may be moved anywhere in your directory.

4. Run application by double clicking the shortcut or on the “Frequency Response

Analyzer.exe” file.

Using the Frequency Response Analyzer Arduino code:

1. Open the Freq_Resp_Anal_Arduino.ino with the Arduino IDE.

2. Change the defined pin numbers to correspond with the current MCU or Arduino model.

a. DATA must be a Digital, PWM, or SDATA pin.

b. CLK must be a Digital, PWM, or SCLK pin.

c. FSYNC must be a Digital or PWM pin.

d. IND_LED must be a Digital or PWM pin.

e. TRI_SW must be a Digital or PWM pin.

f. ADC must be an ADC pin.

g. SWEEP_BUT must be a Digital or PWM pin.

3. Upload the Freq_Resp_Anal_Arduino.ino to your Arduino.

4. Connect Arduino pins to the corresponding schematic.

13

Running the Frequency Response Analyzer Device:

1. Run application by double clicking the shortcut or on the “Frequency Response

Analyzer.exe” file.

2. Plug the Arduino into your PC.

3. Click the down arrow on the “Comport” dropdown box.

4. Select the Comport that corresponds to your Arduino.

5. Connect the ground of your circuit to the GND pin on the schematic or board.

6. Connect the Test In+ probe to the input of your filter circuit.

7. Connect the Test Out- to the output of your filter circuit.

8. Power the Vdd and Vss terminals of your active filter’s op-amps using the +6V and -6V

terminals.

14

9. Move the waveform selection switch to the corresponding position for sinusoid or triangle

waveforms.

10. Click “Record Frequency Response” button on the Frequency Response Analyzer App.

a. You have 5 seconds to click the Sweep Button on the Board or Circuit.

b. The indicator label should say “Reading” if data is being properly read by the

application from the Arduino.

c. A time estimation should appear on the rightmost label in the application.

d. The indicator label will say “Done” once the data is done being recorded.

11. Press the “Display Recorded Data” button once the samples have been recorded.

a. This will display a graph corresponding to the data points taken.

b. You can select the format by selecting “Magnitude (Vrms)” or “Magnitude (dB)”

and also selecting “Sinusoid” or “Triangle”.

12. You can save the data points into a csv by pressing the “Save Data Points As” button and

selecting a destination.

13. To record another filter circuit, repeat steps 5-10.

15

6.2 APPENDIX II - ALTERNATIVE DESIGNS

Power Supply and Grounding Changed from Original Design

The original design of the Frequency Response Analyzer circuit did not have a supply for active

filters. It was desired to use a wall-mounted 10V power supply to power the board, but this would

create grounding issues if the board was connected to a PC that wasn’t properly grounded. To

avoid damages to the user’s PC, we decided to use a 12V battery supply since the voltages are

relative only to the terminals and not to common ground.

Data Recording Method Changed

Originally our client wanted the device to save the data points onto a physical SD card connected

to the board and the board would have a MCU embedded into the device. We decided that we

already had enough software experience to use a PC to do all the data recording and post

processing. This would help reduce the size of the MCU programming files and reduce the cost of

the design by requiring the user to already have their own MCU platform such as an Arduino.

Assembly Requirements Changed

Our client wanted to help reduce the cost of the final device by making the device easy to solder for

novice electrical engineers. However, the function generator IC and the RMS to DC converter IC

both only come in surface mount packages. This would require an adept engineer to solder. For this

reason we planned the PCB to have IC sockets and have a technician from the ETG to solder the

two surface mount ICs.

Inability to Meet Price Requirements for Device

The original price requirement for the Device was $25, but the two primary ICs on the board itself

cost $25 (the function generator and the RMS to DC converter). To this end, we tried our best to

reduce the cost of the overall design by requiring the user to have an Arduino with ADC

capabilities and to supply batteries for the device.

6.3 APPENDIX III - CODE

ARDUINO CODE (C++)- FREQ_RESP_ANAL_ARDUINO.INO:

16

17

18

Python Code - Frequency Response Analyzer.py

19

20

21

22

