Frequency response
measurement system for at-
home laboratory work

FINAL REPORT

sdmay?21-49
Client: Gary Tuttle
Advisers: Gary Tuttle

Team Members: David Gorzney, Rohan Gijare, Samuel Ferguson,
George Youngwirth, Kathryn Blesi, Tabitha Kiiru

Team Email: sdmay21-49@iastate.edu

Revised April 25, 2021

Table of Contents

1 Introduction
1.1 Acknowledgement
1.2 Problem and Project Statement
1.3 Operational Environment
1.4 Requirements
1.5 Intended Users and Uses
1.6 Assumptions and Limitations
1.7 Expected End Product and Deliverables
1.8 Development Standards & Practices Used
1.9 Applicable Courses from lowa State University Curriculum
1.10 New Skills/Knowledge Acquired That Was Not Taught in Courses
2 Design
2.1 Similar Projects And Literature
2.2 Development Process
2.3 Design Schematic & PCB Prototype
2.4 Design Evolution
3 Testing
3.1 Unit Testing
3.2 Interface Testing
3.3 Acceptance Testing
4 Implementation
5 Closing Material
5.1 Conclusion
5.2 References

6 Appendices
6.1 Operation Manual
6.2 Alternative Designs
6.3 Code

A W W W W W

10

11

11

11

12
12
15
15

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

2.3 Figure 2.3.1: Frequency Generator Module Schematic
2.4 Figure 2.4.1: Device Block Diagram
3.1 Figure 3.1.1 Output waveform of the frequency generator using a simple RC filter circuit

3.2 Figure 3.2.1 Frequency Response Analysis Application GUI

1 Introduction

1.1 ACKNOWLEDGEMENT

Great acknowledgements are given to Professor Gary Tuttle of the lowa State University
Electrical Engineering department for his insight and knowledge to the topics revolving around the
project specifications

1.2 PROBLEM AND PROJECT STATEMENT

- This project is a take home frequency generator. Throughout the COVID19 pandemic,
students were left without a lab bench while taking heavy lab classes. lowa State
University figured out how to send the students take home exploration boards. The
problem though, was that these boards cost way too much money. On top of that the
boards were sold out as many other programs attempted to buy the same boards. The
take home frequency generator project has the goal of giving students the hardware to
measure the frequency response of their circuits for a price that is reasonable.

- The project is to consist of a printed circuit board and other components.

- There are going to be two probes for measurement along with the frequency input wire
and the ground.

- The assembly will have a way to store values through software directly into the computer.

1.3 OPERATIONAL ENVIRONMENT

This product is designed to be used in an at home lab environment. The product is designed to
be able to be put into a backpack and carried around so it will not be too fragile, though it is not
rugged enough to be dropped or crushed. Being as it is a piece of electrical lab equipment, it is
not designed to be wet or left out in the elements.

1.4 REQUIREMENTS

Functional

e Alow cost component system that creates, measures and records the frequency
responses and can be purchased to be operated at-home.
e The final product should have the following components incorporated into it :
o asweepable AC source with frequency ranging from 10 Hz to 1 MHz
a chip to measure RMS voltages
a microcontroller to automate the sweep and measurement
a memory module for storing the measured results
an interface for that can be used with a computer to control measurements and
review measurements.

O O O O

Non-functional

e Portable
e FEasytouse
e Should cost less than $25

1.5 INTENDED USERS AND USES

Our end product will be used by college students enrolled in EE201. EE230, and EE333 at lowa
State. It will be used as a way to complete laboratory assignments if a student is not able to
physically be in the lab.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:
User will have -

e Windows machine to run Frequency Response Analyzer App

e An Arduino microcontroller with ADC capabilities.

e Breadboard and wires to connect terminals of the Arduino to the board and test circuit
components.

Limitations:

Should be completed by the end of spring semester 2021

The Frequency range of the function generator will be between 10 Hz to 1 MHz

Should be pre-soldered so that students with no soldering skills can use the device easily.
Manufacturing cost should be $100 or less

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The project is a frequency response module that will be used by students for at home lab work.
The PCB will be used to connect all of the various parts and will have circuit logic used to hold the
system together. The probes will be used to send out the generated frequency, for ground, and for
reading the information for the frequency response. The user manual details how to use the end
product. This will be the last thing we make, once we know how the end product will work. This will
be completed by April of 2021.

1.8 Development Standards & Practices Used

e The development of the prototype will be guided by the IEEE standards for technical
reliability and soundness.
o |EEE730: Unit testing
o |EEE754: Measurements must be accurate to two decimal places
o |EEE33-1927: Frequency specification must be accurate to 1Hz
e Solderless breadboards will be used as a construction base for the testing of all the
components for the final product.

1.9 Applicable Courses from lowa State University Curriculum
EE 201: Electric Circuits

EE 230: Electronic Circuits and Systems
EE 333: Electronic Systems and Design

1.10 New Skills’/Knowledge acquired that was not taught in courses
PCB design (KiCAD)

Python programming
Arduino programming (C++)
Application specific MCU programming (AD9833 Function Generator)

Microchip unit testing (RMS to DC converter and Function Generator)

2 Design

2.1 Similar Products And Literature

In the market currently there is a board called the DAD (Digilent Analog Discovery) board. This
board has many different features that relate to electronic circuit analysis. It has frequency
response, phase response, and many more features. The difference between this product and
the product we are trying to create is that the DAD board has many more bells and whistles which
cause it to cost significantly more ($399) and we planned to have the Frequency Response
Device cost around $25.

2.2 DEVELOPMENT PROCESS

We used the Waterfall methodology as our development process, which involves completing one
task before moving on to the next. This allowed us to know where we were in the design process
and the tasks we needed to complete. We first looked at the project's requirements and talked to
our client about what he wanted the end product to look like. Using this information we created a
general design of our device , adding small details as our client advised us, and eventually
created a detailed design. Next step was programming the function generator, then performing
unit testing on each component in order to determine that they work. We then moved to
integration testing to test multiple units together. The last step of this methodology was system
testing where we tasted the system as a whole to make sure that the device meets all the design
requirements.

2.3 DESIGN SCHEMATIC & PCB PROTOTYPE

The project included designing a schematic and designing a PCb layout of the model. Changes
and alterations that occurred were reflected in the schematic and PCB design, and in the updated
list of components. We created a schematic capture, associated footprint and defined the outline.
However, we were unable to create a board layout due to time limitations and the fact that we
were new to using KiCAd.

a

5 Add physical button for sweep and ical switch for
£ AD8436
3
3‘ = 20 j
19 =
akdown 1op
cl 18 /5V_Arduino
lmou LY 17
16
5
25MHz_Clk 15
' _j_ '
1 4 5V_Arduino Z s
J_c 2 8 13
0.1p Ly Abos33
2 3 Clk [c3 1 — 10| (Test_In+ > — 9 12 s
a5 to.0C o,
d S H 9 <RMS_to_DC— 10 11
10 % —
3 81—\ /\,———FS¥NC|
L7 100 rs
<‘7j-“‘_ 4 7" —SCLK]
10QR7
[Ck— 5 6 ——\/\—SData|
100

Figure 2.3.1: Frequency Generator Module Schematic

2.4 DESIGN EVOLUTION

For our original proposed design, we wanted the Frequency Response Device to have an
embedded MCU that would control the function generator, sample the RMS to DC output and
save the data points to a CSV. Since some of our group members already had experience with
software development, we decided to use a PC to save and post process the data points. This
helped reduce the development time of the device and overall cost of the deceive. Also having an
application that can post-process the data and give time estimations of the analysis makes using
the device much more convenient for the user. The one drawback of this design change is that
the user is required to own an MCU such as an Arduino. However, students can check out
Arduino’s for free from ETG in Coover Hall.

We also wanted to give the user the ability to set specific frequencies using a potentiometer, but
this was only a stretch goal to give the device more features and flexibility. The device was also
supposed to have an LCD screen that would read the current frequency being output of the time
remaining for the analysis, but this was replaced with the Frequency Response Analysis
application.

We added +-6V terminals so that the user can analyze active filter circuits instead of just passive
filter circuits, but the 12V source must be a battery or a battery pack. The board also has a
physical button to start the analysis and a switch to swap between sinusoidal and triangular
waveforms. The final design of our PCB would be similar to the block diagram given below. We
have all the mentioned features in our prototype breadboard design.

Frequency Response

Analyzer
APP

oo -

234
XXX

FUNCTION GEN

TESTING (>

Waveform

=]

Sweep Sine Triangle

Figure 2.4.1: Device Block Diagram

3 Testing

3.1 UNIT TESTING

The unit testing of our project was broken down into three main groups: Testing for the function
generator module, testing for the RMS to DC Converter module, and software testing for the User
application and the Arduino code.

Function Generator Module -

To test the function generator module, we created an Arduino application that would program the
function generator to do different waveforms at specified frequencies. This testing allowed us to
learn what all the correct bit placements were to correctly program the AD9833 function
generator. Once the AD9833 programming was understood, we then were able to complete an
Arduino application. This application programs the function generator to sweep frequencies with
the given waveform from 10Hz to 1MHz.

RMS to DC Converter Module -

We used a lab function generator to generate sinusoids at different Vrms values and frequencies
and analyzed the given outputs for the RMS to DC converter (AD8436). This testing helped us
get an idea of the accuracy of the RMS to DC converter and what the amplification of the function
generator and the DC output would need to be.

Software Applications -

For testing of the Arduino and Frequency Response Analyzer application, we focused on the
Arduino to PC communication. The serial driver in the Frequency Response Analyzer application
needed to be programmed to have a timeout of 5 seconds. The serial driver also needed to be
correctly unbound when the application was no longer using the comport. The Arduino would
send the sampled magnitudes via comport to the PC. The first byte of data from each sampled
value would begin with xCO0. This would be used as a flag for the Frequency Response Analyzer
application to ensure that the sampled comport messages were from the Arduino.

System.

Finally for system testing, we used the device on a couple of filter circuits with their corner
frequencies calculated and compared the output waveforms of the Frequency Response
Analyzer. For example, we tested the device with an RC filter circuit (Lkohm & 10nF) with corner
frequency of 15.91kHz and received this plot as the output which correctly corresponds to the
expected frequency response.

£} Frequency Response Analyzer

COM3 - Arduino Mega ~ [l Record Frequency Response SBIy=3M Display Recorded Data I Magnitude (Vrms) —! I Sinusoid — I Save Data Points As [N l=g =l VAV VRT=1od

4.0 4 ee " %,

3.5+ L)

Magnitude (Vrms)
~N w
wn =}
®

~
=]
L

154 L)

1.0 4 L]

T . T T .
10! 10? 10° 10* 10° 10%
frequency (Hz)

A€ +Q=

Figure 3.1.1 Output waveform of the frequency generator using a simple RC filter circuit

3.2 INTERFACE TESTING

For interface testing, we tested our Frequency Response Analyzer applications’ user interface.
For the comport selection window, the user can select any available comport. If the comport is
unavailable, then the blue “Done” indication label will display “COM Unavailable”. This would be
the case if the comport was unplugged or being used by another application. The comport can
also timeout if the user didn’t hit the sweep button in time after pressing the “Record Frequency
Response” button or the comport they selected was the improper port. In this case, the indicator
label will then display “Timed Out”. When the user presses the “Display Recorded Data” button,
the application displays the most recent completed frequency response recording. This makes it
so that the application doesn’t fail if they have a failed attempt and try to display the data. The
application will display “Done” in the indicator label to tell the user that the application is done
sampling. There is also a “Time Est.” label to indicate the amount of time remaining for the
frequency response analysis.

) Frequency Response Analyzer

Record Frequency Response Ready Display Recorded Data [l Magnitude (Vrms) —i I Sinusoid —i [l Save Data Points As [WTYST-W0 =23 ol 0 W O[O JET=16)

Figure 3.2.1 Frequency Response Analysis Application GUI

3.3 ACCEPTANCE TESTING

To demonstrate that the design requirements are being met, we compared the results obtained
from testing to the expected and desired results. The device sweeps from 10Hz to 1MHz as given
in the design requirements. We used an oscilloscope to probe the output of the device without a
filter circuit and ran the device. The device accurately swept between the programmed
frequencies from 10Hz to 1MHz. We then added filter circuits to the device, probed the filter
output with the oscilloscope, and compared the oscilloscope magnitudes with the recorded
magnitudes by the Frequency Response Analyzer. The Oscilloscope and the device had the
same magnitudes and frequency response.

4 Implementation

For the implementation of the device, we started by designing the function generator module
using the AD9833 IC. Before we designed the module, we did extensive research through the
data sheets provided. The AD9833 IC was a digital application specific IC and was quite
complicated to learn how to program with it's proprietary programming message formats. We
learned how to use the SPI serial interface, different bit placements, and data conversions for the
IC. We used a testing schematic given to us on the datasheet for the function generator and tried
programming it using an Arduino. Programming the AD9833 was the most time consuming
portion of the project as it was hard to learn the bit placement of the programming messages with
few examples online. Once we figured out how to program it to create a specific frequency and
waveform, we needed to figure out how to constantly reprogram it to sweep through a range of
frequencies. With some more research and testing, we were able to figure out how to reset the
function generator and reprogram it for a different frequency quickly and easily.

Once we completed the function generator module, we started to work on a prototype Python
application that would take a CSV of recorded data points and display them on a plot. The
prototype mostly consisted of the graphical user interface (GUI) and did not include the time
estimation indicator or the status indicator. Once the GUI was designed for the application, we
created an Arduino application that would serialize ADC values of a given voltage and send it to
the PC. For this portion of the design we added a flag byte to each serialized message of 0xCO.
This flag would indicate that the message was correct and complete. We then programmed the
Python application to read the serial port and get the correct serial messages. The messages
were then calculated into actual voltage values based on the ADC range of 5V.

Now that the Python application could sample the magnitudes of the Frequency Response
Analyzer device, we could start to design the RMS to DC converter module. We started the
design by creating a sample test circuit from the AD8436 datasheet. Using a lab function
generator, we tested the module with different magnitudes and frequencies to see the
corresponding DC output voltages. Luckily the device had little to no offset with a coupling
capacitor to the RMS input of the IC. We decided that the DC output was accurate enough to
amplify itself instead of the function generator. We decided this because in order to amplify the
function generator we would need a negative supply and designing the circuit without a negative
supply voltage would be much simpler and cost effective.

Once we had a working function generator module and RMS to DC conversion module, we then
could work on finalizing the software. Magnitude sampling was added to the frequency sweeping
Arduino code and the Python application’s frequency range was matched to the frequency sweep
of the function generator. Finally, all the modules for the device were complete and we began
system testing and implementation.

With the final testing of the device, we changed the plot from being linear to logarithmic. This
really helped eliminate the clutter of data points at the lower frequencies. We also added an
optional 9-12V battery supply that would allow the user to have +-4.5V or +-6V available for
testing active filters. We then tested some filter designs to make sure the device was recording
frequency responses correctly. The design was a success, so we began working on a PCB using
KiCAD. Unfortunately we were all new to using KiCAD and ran out of time to design and order the
PCB so that we could have a finished device.

5 Closing Material

5.1 CONCLUSION

We were able to complete robust and effective software for this project and a full working
schematic for the design that met nearly all of the requirements. We unfortunately did not have
enough time to complete a PCB design and order the PCB for the finalized device. With the two
extra weeks we have in a normal semester, we believe we would’ve been able to fully complete
the project and have a finalized device. Overall, with the current software and design materials
we have available, another engineer or student should easily be able to replicate the working
design for themselves.

5.2 REFERENCES

List technical references and related work / market survey references. Do professional citation
style (ex. IEEE).

Schwartz, Eric M. “Digilent Analog Discovery (DAD) Tutorial.” University of Florida, 2015,
mil.ufl.edu/3701/DAD/DAD _tutorial.pdf.

Additional Information for the components used in the project:
ATmega328P Microcontroller Unit Data Sheet -

https://wwl.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-
ATmega328P Datasheet.pdf

AD9833 Frequency Generator IC Data Sheet -

https://www.analog.com/media/en/technical-documentation/data-sheets/AD9833. pdf

AD8436 RMS Voltage Measurement IC Data Sheet -

https://www.analog.com/media/en/technical-documentation/data-sheets/AD8436.pdf

11

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9833.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD8436.pdf

6 Appendices

6.1 APPENDIX | - OPERATION MANUAL

Using the Frequency Response Analyzer App:

1. Download the “Frequency Response Analyzer.zip” file.

2. Extract the “Frequency Response Analyzer.zip” file.

3. Rightclick the “Frequency Response Analyzer.exe”, create a shortcut, and place the
shortcut in your desired location.

a. The “Frequency Response Analyzer.exe” must remain in the folder, but the folder

may be moved anywhere in your directory.

4. Run application by double clicking the shortcut or on the “Frequency Response
Analyzer.exe” file.

Using the Frequency Response Analyzer Arduino code:

1. Open the Freq_Resp_Anal_Arduino.ino with the Arduino IDE.
2. Change the defined pin numbers to correspond with the current MCU or Arduino model.

fdefine
$define
fdefine
fdefine
$define
fdefine
$define

a. DATA must be a Digital, PWM, or SDATA pin.

b. CLK must be a Digital, PWM, or SCLK pin.

c. FSYNC must be a Digital or PWM pin.

d. IND_LED must be a Digital or PWM pin.

e. TRI_SW must be a Digital or PWM pin.

f. ADC must be an ADC pin.

g. SWEEP_BUT must be a Digital or PWM pin.
DATA 9 // SPI Data pin number

CLK 10 // SPI Clock pin number

FSYNC 11 // SPI Load pin number (FSYNC in AD9833 usage)
IND LED 22 //Outputs signal for sweep indicator light
TRI_SW 24 //Input of waveform switch for triangle

ADC AOD //ADC pin

SWEEP BUT 26 //Input of button activation for f sweep

3. Upload the Freq_Resp_Anal_Arduino.ino to your Arduino.

Freq_Resp_Anal_Arduino | Arduino 1.8.13 (Windows Store 1.8.42.0)

File Edit Sketch Tools Help

Freq_Resp_Anal_Arduino

4. Connect Arduino pins to the corresponding schematic.

12

Running the Frequency Response Analyzer Device:

1. Run application by double clicking the shortcut or on the “Frequency Response
Analyzer.exe” file.

2. Plug the Arduino into your PC.

3. Click the down arrow on the “Comport” dropdown box.

Magnitude (Vrms) — I Sinusoid —i [l Save Data Points As S NTY TR =X Gl VN0 [0 ET=T

g ponse Analyzer

} Freque
Record Frequency Response Ready Display Recorded Data

Select the Comport that corresponds to your Arduino.

Connect the ground of your circuit to the GND pin on the schematic or board.

Connect the Test In+ probe to the input of your filter circuit.

Connect the Test Out- to the output of your filter circuit.

Power the Vdd and Vss terminals of your active filter's op-amps using the +6V and -6V
terminals.

4,
5.
6.
7.
8.

Frequency Response
Analyzer
APP

oo ~

23

FUNCTION GEN

TESTIN+ >

Waveform

[=_]

Sweep Sine Triangle

9. Move the waveform selection switch to the corresponding position for sinusoid or triangle
waveforms.
10. Click “Record Frequency Response” button on the Frequency Response Analyzer App.
a. You have 5 seconds to click the Sweep Button on the Board or Circuit.
b. The indicator label should say “Reading” if data is being properly read by the
application from the Arduino.
c. Atime estimation should appear on the rightmost label in the application.
d. The indicator label will say “Done” once the data is done being recorded.

) Frequency Response Anglyze
Record Frequency Response Ready Display Recorded Data [l Magnitude (Vrms) —! I STy EEVLETEEIYE Time Est: 0.00 sec

11. Press the “Display Recorded Data” button once the samples have been recorded.
a. This will display a graph corresponding to the data points taken.
b. You can select the format by selecting “Magnitude (Vrms)” or “Magnitude (dB)”
and also selecting “Sinusoid” or “Triangle”.

) Frequency Response Analyzer

Record Frequency Response Ready Display Recorded Data Time Est: 0.00 sec

12. You can save the data points into a csv by pressing the “Save Data Points As” button and

selecting a destination.

» Frequency Response Analyzer

Record Frequency Response Ready Display Recorded Data | Magnitude (Vrms) AISinuscid — Time Est: 0.00 sec

13. To record another filter circuit, repeat steps 5-10.

6.2 APPENDIX Il - ALTERNATIVE DESIGNS

Power Supply and Grounding Changed from Original Design

The original design of the Frequency Response Analyzer circuit did not have a supply for active
filters. It was desired to use a wall-mounted 10V power supply to power the board, but this would
create grounding issues if the board was connected to a PC that wasn’t properly grounded. To
avoid damages to the user’'s PC, we decided to use a 12V battery supply since the voltages are
relative only to the terminals and not to common ground.

Data Recording Method Changed

Originally our client wanted the device to save the data points onto a physical SD card connected
to the board and the board would have a MCU embedded into the device. We decided that we
already had enough software experience to use a PC to do all the data recording and post
processing. This would help reduce the size of the MCU programming files and reduce the cost of
the design by requiring the user to already have their own MCU platform such as an Arduino.

Assembly Requirements Changed

Our client wanted to help reduce the cost of the final device by making the device easy to solder for
novice electrical engineers. However, the function generator IC and the RMS to DC converter IC
both only come in surface mount packages. This would require an adept engineer to solder. For this
reason we planned the PCB to have IC sockets and have a technician from the ETG to solder the
two surface mount ICs.

Inability to Meet Price Requirements for Device

The original price requirement for the Device was $25, but the two primary ICs on the board itself
cost $25 (the function generator and the RMS to DC converter). To this end, we tried our best to
reduce the cost of the overall design by requiring the user to have an Arduino with ADC
capabilities and to supply batteries for the device.

6.3 APPENDIX Ill - CODE

ARDUINO CODE (C++)- FREQ_RESP_ANAL_ARDUINO.INO:

15

#include <math.h>|

#include <stdint.h>

// Pins for SPI comm with the AD9833 IC

$define DATA 9 // SPI Data pin number

#define CLK 10 // sPI clock pin number

#define FSYNC 11 // SPI Load pin number (FSYNC in ADZ833 usage)
#define IND LED 22 //Outputs signal for sweep indicator light

[I, ST, RS TURN

#define

TRI_SW 24 //Input of waveform switch for triangle

$define ADC RO //ADC pin

#define SWEEP_BUT 26é //Input of button activation for f sweep

#define MAX FREQ 1000000 //1MHZ

#define DELAY 1500 //ms of delay between esach freg changs

#define FREQ STEP MULT 1.1
const long BAUDRATE = 9 H
int sweeping = 0;
unsigned long int output_frequency = 0;//Hz
int press_count = 0; //for debouncing button
int triangle = 0;

[Flvoid write to func_gen(word data){
digitalWrite (CLK, LOW);
digitalWrite (CLK, HIGH) ;
digitalWrite (FSYNC, LOW) ;

] for(byte 1 = 0; 1 < 16; i++){
if (data & U R
digitalWrite (DATA, HIGH);
}
H else{
digitalWrite (DATA, LOW) ;
e }

data = data << 1;
digitalWrite (CLK, HIGH);
digitalwrite (CLK, LOW);
ro}
digitalWrite (CLK, HIGH) ;
digitalWrite (FSYNC, HIGH) ;
-

Hvoid reset_func_gen() {
delay(100);
write to_func_gen (0
delay (100);

- }

Flunzigned long calc_freq div(unsigned long int* freq){
//Serial.print ("Entered freq: ");//For Testing
//serial.println(*freq);//For Testing
//2°28/1MHz = 268.435
//2728/25MHz = 10.737
double output_partl = 10.737 * (*freq);
unsigned long output part2 = round(output partl) ;
//Serial.print("Div: ");//For Testing
//serial.println(ocutput_partl);//For Testing
unsigned long output = (unsigned long) output_part2;
return output;

=1

Elvoid set freg(unsigned long int* freq) {
// 400 Hz Sine

unsigned long output_div
unsigned short fregl
unsigned short freg2
unsigned short wave
fregl = cutput_div |
freql =
fregl =
output_div = ocutput_div >> 14;
freq2 = ocutput_div | freq2;
freg2 = freq2 &
freqg2 = freg2 | O 00
//Serial.println(freql,1€);//For Testing
//Serial.println(freq2,16);//For Testing
[if(triangle == 1){

wave = wave |

calc_freq div(freq);

o}

write to func gen(Ux2100); //Ex: 0x2100
write to_func_gen(fregl); //BEx: 0xé3ée
write to func_gen(freq2); //Ex: 0x4006
write to_func_gen (0= 10); //Ex: 0xC000
write to_func_gen(wave); //Ex: 022000

84 [Hvoid sample adc(void){

8 int adc_value = analogRead(ADC) ;

g6 uintlé t adc_2byte = (uintlé t) adc_value;
ade_Z2byte = adec_2byte | 0=c000;

uint8 t adc byte 2 = (adc_2byte >> £);
uintf t adc byte 1 = (adc 2byte & 0x
Serial.write(adc _byte 2);
Serial.write(adc byte 1);
//serial.println(adc value);//For Testing

oysz

-}

Hwvoid setup(void) {
Serial.begin (BAUDRATE) ;

pinMode (CLK, OUTEUT) ;
pinMode (DATA, OUTPUT) ;

100 pinMode (FSYNC, OUTEUT) ;

101 digitalwrite (CLK, HIGH) ;

102 digitalWrite (FSYNC, HIGH);

103 reset_func_gen();

104 pinMode (IND_LED, QUTPUT) ;

105 digitalWrite (IND LED, LOW);

106 pinMode (TRI_SW, INPUT);

107 pinMode (SWEEP_BUT, INPUT) ;

108 pinMode (ADC, INPUT) ;

109 -}

110

111 vold loop{void) {

112 if (sweeping == 0){

113 int sweep button val = digitalRead(SWEEP_BUT) ;
114 if (sweep button _val == 1){

115 press_count += 1;

Lie = if (press_count >= 2){

117 sweeping = 1;

118 digitalWrite (IND_LED, HIGH) ;
119 press_count = Uj

120 triangle = digitalRead(TRI_SW) ;
121 output_ frequency = 10;

122 . }

123 - 1

124 [H else{

125 press_count = U;

126 - 1

127 o}

128 E if (sweeping == 1) {

129 = if (output_frequency <= MAX FREQ) {
130 set freg(&output frecquency);
131 delay(DELAY) ;//wait ms

132 sample adc();

133 output frequency = output frequency * FREQ STEP MULT;//Frequency step const
134 - 1

135 [H else{

136 output frequency = MAX FREQ;
137 set_freq(&output_ frecuency) ;
138 delay(DELAY) ;//wait ms

139 sample_adc();

140 sweeping = 0;//Stopping sweep
141 output_frequency = U;

142 reset_func_gen() ;

143 digitalWrite (IND_LED, LOW) ;
144 - 1

145 o}

146

147 }

Python Code - Frequency Response Analyzer.py

LE 3

Ex 3

1 £ —*- coding: utf-8 —-*-

2 o

3 on Fri F 16:33:00 2021

4

5 @author: Samuel Ferc n

6 o

7 import tkinter as tk

8 from tkinter import filedialog

9 import datetime as dt

.0 from threading import Thread

1 from shutil impeort copyfile

2 import os

3 import time

4 import math

5 import matplotlib

.6 matplotlib.use ("Tkigg™)

| from matplotlib.backends.backend tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
.8 from matplotlib.figure import Figure

9 import csv

0 import serial

1 import serial.tcols.list ports

2 %try:

13 import ttk

4 I%except ImportError:

‘5 import tkinter.ttk as ttk

‘6

7

'8 it sUI Window

= root = tk.Tk()

HU root.title("Frequency Response Analyzer™)

ol #root.geometry (' 700x700")

12 root.state("zoomed")

13 root.config (bg="gold")

4 root.iconbitmap (r'freq resp anal.ico’)

'5 E233 SUI Frames £33
5 topFrame = tk.Frame(root, bg='red2Z', height = 50)#Control Interface Frame
7 topFrame.pack(side = tk.TOP, fill = tk.X, expand = False)
9 E233 Global Variables

.0 magnitude format options = ["Magnitude (Vrms)", 6 "Magnitude (dB)™]
Il selected magnitude format = tk.StringVar ()

.2 selected magnitude format.set ("Magnitude (Vrms)")

E waveform options = ["Sinuscid","Triangle"]

4 selected waveform = tk.Stringvar()

.5 selected waveform.set("Sinusoid")

.6 global plot displayed

| plot_displayed = False

-8 global ser

-9 ser = None

0 global connected comport

il connected comport = None

12 global max number of bytes

13 max number of bytes = 0

14 global bytes read

5 bytes _read = 0

6 glebal time out event

i time out event = False

18 glebal num freq increments

19 num_freq increments = 122

0 global max_freg

i1 max freq = 1000000 #Maximum frecuency of func sweep
2 global input vpk

i3 input_vpk = 0.64 #Circuit input voltage without filter
4 glebal time out

i5 time out = 5 #max number of seconds serial reader waits for bytes

oy Oy
0~

R B)
T N LT

~ =] =1 =]
D~ o1

0 o

80
81
82
83
g4

a5

86

oo

w0 o

0 W0 Y

| 0
0~ Lo W N

100
101
102
103
104
105
106
107
108
108
110
111
112
113
114

14¢

Hdef

Functionality F23

on_close():
global ser
if ser != Necne:
if ser.is_open:
ser.close ()
print("Closing program")
root.destroy()

time_estimation():

global max number of bytes

global bytes read

global time out_ewvent

start_time = time.time ()

bytes read til = bytes read + 5

if max number of bytes < 5 or bytes_read_til >= max_number_ of bytes:

return

while bytes read < bytes read til and time out event == False:
pass

end time = time.time ()

time difference = end time - start time

time_average = time difference / 5

estimated time = (max_number of bytes - bytes_read) * time_ average

est string = "Time Est: " + str(estimated time) [:-12] + " sec”

time_estimation_ label.config(text=est_string)

[—def

E3 53
[—def

{THT}

{1}
7z W W

update_indic - color_reading():

print('update color')

recording indicator label.config(text='Reading', bg = 'Creen’)
thread = Thread(target:record_maqnitudes_from_com)
thread.start()

—-Record Magnitudes from COM Port—---—---— FHE

T rd_magnitudeg_fr&m_:&m():

comport = com sel.get ()

comport = comport[:5]

if len(comport) > 4:
comport = comport[:5]
try:
global ser
ser = serial.Serial (comport)
except serial.serialutil.SerialException:

print ("Com port unavailable™)
recording indicator label.config(text='COM Port Unavailable', bg = 'red’)
ser = None
return
if ser != Nene:
print ('Reading Serial

print (comport)

global bytes_read

bytes_read = 0

global max number of bytes
max_number_ of bytes = num_freq_increments
glebal time out_event

time out event = False

ser.timeout = time_out

start_time = time.time ()

cancel time = start time + time out #timeout seconds
current_time_out = 0

magnitude list = []

while bytes read <= max number of bytes and current time out <= cancel time:

if bytes read ==
thread 2 = Thread(target= time_estimation)
thread 2.start()
try:
data = ser.read(2) #Read two bytes from serial in succession
#print (data)
except serial.serialutil.SerialException:
print("Com port unavailable™)
recording indicator label.config(text='COM Port Unavailable', bg =
ser = Nene
return
if not data:
recording indicator label.config(text='Timed out', bg = 'orange’)
print('Tim=d out')
time ocut event = True
ser = Nene
return

'red')

147 check bits = int.from bytes(data, byteorder="big", signed=False)
148 #Data check offset

149 adc_value = check bits - 49152 #xC000 in Integer

150 #convert ade value to voltage wvalue

151 adc_value = (adc_value/1023) * 5 #10 bit adc with 5V in max

152 print(adc_value)

153 if adc value > 0:

154 #add to list

155 magnitude list.append(adc value)

156 bytes_read += 1

157 start time = time.time ()

158 cancel time = start time + time out

159 H if bytes_read % 5 == 0 and bytes_read !'= 0:

160 thread 2 = Thread(target= time estimation)

161 = thread 2Z.start ()

162 H else:

163 e current_time out = time.time ()

164 ser.close ()

165 [if current time out >= cancel time:

166 recording indicator label.config(text='Timed Out', bg = 'orange’)
167 print (' Timed Out')

168 = time out event = True

169 [H else:

170 recording indicator label.config(text='Done', bg = 'blue')

171 time estimation label.config(text="Time Est: 0.00 s=c")

172 print('Dones")

173 print(magnitude list)

174 [H if os.path.exists('magnitude data points.csv') == False:

175 magnitude csv = open('magnitude data points.csv', 'w', newline='")
176 . magnitude csv.close()

177 magnitude csv = open('magnitude data points.csv', 'w', newline='")
178 magnitude csv write = csv.writer (magnitude csv, delimiter=",")
179 #add date to CSV file

180 date time = dt.datetime.now()

1s1 [H date time string = str(date_time.month) + -’ + str(date time.day) + \
182 ‘=" + str(date time.year) + ' ' + str(date time.hour) + ":' + \
183 - str(date time.minute) + ':' + str(date time.second)

184 print(date time string)

185 #4TODO

186 fmagnitude csv_write.writerow(date time string)

187 #Add date to CSV

188 magnitude csv_write.writerow(magnitude list)

189 frequency list = []

190 freqg = 10

191 o while freqg < max_freq:

182 frequency_ list.append(freq)

193 P freq = freg * 1.1

194

195 frequency list.append(max freq)

196 magnitude csv _write.writerow(freguency_ list)

197 - magnitude_csv. close ()

198

199 - Read Magnitudes from CSV-——-—————— $HE

200 E ad data from csv():

201 — if os.path.exists('magnitude data points.csv') == False:

202 print('CsSV does not exist")

203 = return None

204 [H else:

205 magnitude csv = open('magnitude data points.c 'r', newline='")
206 magnitude csv_reader = csv.reader (magnitude csv, delimiter=",6")
207 data_list = []

208 row list = list(magnitude csv reader)

209 data_list = row 1list([0]

210 #print (data_list)

211 - return data list

212 - Save Data As $HE

213 #save a copy of CSV to directory

214 [Hdef save csv_as():

215 [save directory = filedialog.asksaveasfilename(title='Save Data Points', \

216 defaultextension=".csv", filetypes=(\

217 (V"), ("All Files™,"*.*")))
2ls [if os.path.exists('magnitude data .csv') == False:

21% print('CsSV does not exist')

220 return None

221 [else:

222 copyfile('magnitude data points.csv', save directory)

223

A s e m o T o n s

224 - Create Plot FE T

225 [Hdef show data plot():

226 #Create plot outline

227 fig = Figure(figsize=(5,5), dpi=100)

228 fig_subplot = fig.add subplot(l1l, xscale='log")
229

230 #5=t plot axis labels

231 = if 5elected_magnitude_format.qet() == "Magnitude (Vrms)":
232 fig_subplot.set_ylabel ("Magnitude (Vrims)")
233 [else:

234 - fig subplot.set_ylabel ("Magnitude (dB)™)

235 fig subplot.set_xlabel ("frequency (Hz)")

236

#Add data points to plot and format
frequency list = []
freqg = 10
= while freg < max freq:
frequency list.append(freq)
- fregq = freg * 1.1

frequency_list.append(max_freq)

#Read Magnitudes

magnitude data list = read data_ from_csv()
magnitude list = []
magnitude number = 0 #Counts number of read magnitudes

#Convert Vpk to Vrms based on waveform of func gen
] if selected waveform.get() == "Sinusoid":
input_voltage = input_vpk/math.sqgrt(2)
elif selected waveform.get() == "Triangle":
input voltage = input vpk/math.sqrt(3)
else:
input voltage = input vpk

number of samples = num freq increments
while magnitude_number < number_of_ samples:

#Ccalculate dB and write magnitude wvalus to data list for plot

if selected_maqnitude_format.get() == "Magnitude (Vrms)":

magnitude list.append(float (magnitude_data list[magnitude number]))
— else:
db_magnitude = 20*math.log(float(magnitude data list[magnitude number])/input voltage,10)

L magnitude list.append(db_magnitude)
- magnitude number += 1

print(len(magnitude list))

#Add Data Points to Plot

fig subplot.scatter(frequency_ list, magnitude list)

#Draw Plot
global plot displayed
if plot displayed:
fdraw new plot in place of old plot
widget list = list(root.winfo children())
widget_list_length = len(widget_list)
widget_num = 1
if widget_list_length > 1:
while widget num < widget_ list_length:
widget_list[widget_num].pack_forget ()
widget_num += 1

{11
Lir

{THT}

= else:

- root.geometry (' 655=c00")
canvas = FigureCanvasTkagg(fig, root)
canvas.draw()
canvas.get_tk widget () .pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True)
toolbar = NavigationToolbar2Tk(canvas, root)
toolbar.update ()
canvas. tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True)

L plot displayed = True

- Update COM Entry Combo Box—-———————— ¥

$Search for available comports and display into combo box
def update comports():
com_sel.config(values=serial.tools.list_ports.comports())

21

209 EE 33 Control Interface b33
300 [Ecom_sel = ttk.Combchox (topFrame, values:serial.tools.list_ports.comports(), \

301 postcommand=update comports, takefocus="")

302 com sel.grid(row=0, column=0, columnspan=1, padx=5, pady=5, sticky=tk.W)
303 com sel.insert(0, "Comport™)

304

305

306 [Erecordﬁdataibutton = tk.Button(topFrame, text = 'F ord Frequency Response', \
307 command = update indicator color reading)
308 record data_button.grid(row=0, column=1, padzx=5, pady=5, sticky = tk.W)

309

310

311 [Erecording_indicator_label = tk.Label (topFrame, text= dy', bg="blue', \
312 fg='white', font='kbcld')

313 recording_indicator label.grid(row=0, cclumn=2Z, padx=5, pady=3)

314

315

316 [Edisplayﬁdataibutton = tk.Button (topFrame, text = 'Display R Y
317 command=show_data plot)

318 display data button.grid(row=0, column=3, padx=5, pady=5)

319

320

321 [Emagnitudefformatisel = tk.OptionMenu(topFrame, selected magnitude format, \
*magnitude_ format_options)

323 magnitude format_sel["highlightthickn ;"]1=0

324 magnitude format_ sel.grid(row=0, column=4, columnspan=l, padx=5, pady=5, sticky=tk.W)
325

326

327 [Ewaveform_sel = tk.OptionMenu (topFrame, selected waveform, \

328 *waveform options)

329 waveform sel["highlightthickness"]=0

330 waveform sel.grid(row=0, column=5, columnspan=1l, padx=5, pady=5, sticky=tk.W)
331

332

333 [Esaveicsviasibutton = tk.Button(topFrame, text = 'Save Data Points As', \

334 command = save cCsV_as)

B35 save csv_as button.grid(row=0, column=¢, padx=5, pady=5, sticky = tk.wW)

336

B37

338 time estimation label = tk.Label (topFrame, text="Time Est: 0.00 ", fg="white", bg='red2', font='bold')
339 time estimation label.grid(row=0, column=7, padx=5, pady=3, sticky = tk.W)
340

341 root.protocol ("WM_DELETE WINDOW", on_close)

342 root.mainloop ()

22

